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1 Introduction

It is often felt that the most remarkable discovery in string theory has been the AdS/CFT

correspondence, [1], which has been further extended to the gauge/gravity correspon-

dence [2]. Interestingly, the gauge/gravity correspondence may play an important role

in condensed matter physics [3, 4]. In particular, the application of the gauge/gravity

correspondence to superconductors has been intensively studied [5–18] (see recent lecture

notes [3, 4] for complete references). It would be very exciting indeed if we could explain

high temperature superconductivity from black hole physics. In addition, from the gravity

perspective the existence of scalar condensation in black hole systems itself deserves further

study in relation to the “no-hair” theorems and a better understanding of the dressing of

horizons by quantum fields [5, 19].

Remarkably, on the gauge theory side, there is a puzzle. As is well known, the Mermin-

Wagner theorem forbids continuous symmetry breaking in (2+1)-dimensions because of

large fluctuations in lower dimensions. Nevertheless, holographic superconductors are

found in (2+1)-dimensions. It is possible that fluctuations in holographic superconduc-

tors are suppressed because classical gravity corresponds to the large N limit. If this is

true, then higher curvature corrections should suppress condensation. Of course, to ex-

amine whether or not the Mermin-Wagner theorem holds, we need to study 4-dimensional

higher curvature gravity. Unfortunately, higher curvature gravity in 4 dimensions is not

particularly illuminating: higher derivative terms in general introduce ghost degrees of
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freedom [20], the exceptions being either Gauss-Bonnet or Lovelock gravity [21], in which

specific combinations of the curvature tensors are used, or f(R) gravity, [22], in which

powers of the Ricci scalar only are used. Unfortunately, the former case is non-dynamical

in 4 dimensions, and the latter case is conformally equivalent to scalar-tensor gravity, [23],

and black hole solutions are therefore identical to the Einstein case [24].

To explore this issue, we instead study 5-dimensional Einstein-Gauss-Bonnet gravity,

which gives a known generalization to the Schwarzschild black hole solution [25]. We would

also like to investigate if the universal relation between the gap ωg in the frequency depen-

dent conductivity and the critical temperature Tc: ωg/Tc ≃ 8, found in [7], is stable under

stringy corrections. In the case of the quark-gluon plasma, there is a universal shear vis-

cosity to entropy density ratio η/s = 1/4π [27], and there are several analyses investigating

the stability of this universal relation [28–35] to higher curvature corrections. To the best

of our knowledge, no corresponding analysis exists in the case of superconductors. Hence,

we look at gap frequency at a given temperature numerically to explore its stability under

higher curvature corrections.

To investigate the effect of the higher curvature corrections on the superconductor, we

operate in the ‘probe’ limit, i.e. where the gravitational back reaction of the scalar and

vector fields on the background geometry is neglected. At least for temperatures near the

phase transition this should be a good approximation, and has been found to be valuable

in the Einstein limit [6]. Ideally, one would like to have a full analytic description of the

phase transition and condensation phenomena, and in this paper we take a modest first

step in this direction. We first prove the existence of a bound on black hole temperature

above which no condensation can occur. Since there is always an analytic solution with

vanishing scalar, [6], we cannot similarly prove the existence of a nontrivial scalar solution

below Tc, however, a simple matching method provides an approximate analytic solution

which explains the phase transition behaviour and gives a very good approximation to the

phase diagram. Indeed, we can calculate the critical temperature analytically within a

few percent in the best case. In a sense, this is the most important result in our paper.

Numerical methods complete the proof of condensation, and are clearly necessary for fully

describing the properties of the fields and the details of the physics.

The organization of the paper is as follows. In section II, we introduce the model

and numerically demonstrate the effect of the Gauss-Bonnet term on the superconductor.

We find that stringy corrections make condensation harder. In section III, we present an

analytic explanation of the superconductor. We can understand the qualitative features of

the superconductor with a simple calculation. The analysis also gives fairly good numerical

results. In section IV, we study the conductivity and show the universality is unstable under

the stringy corrections. We conclude in section V. In the appendix, we present an analytic

explanation of (2+1)-dimensional superconductors for completeness.

2 Gauss-Bonnet superconductors

In this section, we study the effect of Gauss-Bonnet term on the (3+1)-dimensional su-

perconductor using the probe limit. In the probe limit, gravity and matter decouple and
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the system reduces to the Maxwell field and the charged scalar field in the neutral black

hole background.

We begin with the Einstein-Gauss-Bonnet action:

S =

∫

d5x
√−g

[

R+
12

L2
+
α

2

(

RµνλρRµνλρ − 4RµνRµν +R2
)

]

, (2.1)

where g is the determinant of a metric gµν and Rµνλρ, Rµν and R are the Riemann curvature

tensor, Ricci tensor, and the Ricci scalar, respectively. We take the Gauss-Bonnet coupling

constant α to be positive. Here, the negative cosmological constant term −6/L2 is also

introduced. The background solution we consider is a neutral black hole [25]:

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2 + dz2) (2.2)

where

f(r) =
r2

2α

[

1 −
√

1 − 4α

L2

(

1 − ML2

r4

)

]

(2.3)

Here, M is a constant of integration related to the “ADM” mass of the black hole [26].

The position of the horizon defined by f(rH) = 0 is at rH = (ML2)1/4. In order to avoid a

naked singularity, we need to restrict the parameter range as α ≤ L2/4. Note that in the

Einstein limit (α → 0), the solution (2.3) goes to f(r) = r2

L2 − M
r2 , and L can be regarded

as the curvature radius of asymptotic AdS region (r → ∞). For general α, however, the

solution (2.3) behaves as

f(r) ∼ r2

2α

[

1 −
√

1 − 4α

L2

]

, (2.4)

in the asymptotic region. Hence, we define the effective asymptotic AdS scale by

L2
eff =

2α

1 −
√

1 − 4α
L2

→











L2 , for α→ 0

L2

2 , for α→ L2

4

. (2.5)

The Hawking temperature is given by

T =
1

4π
f ′(r)

∣

∣

∣

∣

r=rH

=
rH
πL2

=
M1/4

πL3/2
, (2.6)

where a prime denotes derivative with respect to r. This will be interpreted as the tem-

perature of the CFT.

In this background, we now consider a Maxwell field and a charged complex scalar

field, with the action

S =

∫

d5x
√−g

[

−1

4
FµνFµν − |∇ψ − iAψ|2 −m2|ψ|2

]

. (2.7)
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Taking a static ansatz, Aµ = (φ(r), 0, 0, 0, 0) and ψ = ψ(r), the equation of motion for φ(r)

becomes

φ′′ +
3

r
φ′ − 2ψ2

f
φ = 0 (2.8)

where without loss of generality ψ can be taken to be real, and satisfies

ψ′′ +

(

f ′

f
+

3

r

)

ψ′ +

(

φ2

f2
− m2

f

)

ψ = 0 . (2.9)

Note that the Maxwell equations imply that the phase of ψ must be constant, which is set

to zero by a residual gauge for Aµ.

We now want to solve (2.8) and (2.9) for the scalar and vector field. For the main

part of this paper, we choose to set the mass of the scalar field to be m2 = −3/L2, so that

the mass remains the same as we vary α. Note however, that because of the variation of

the effective asymptotic AdS curvature, (2.5), with α relative to L means that this mass

actually increases (i.e. becomes less negative) with respect to the asymptotic AdS scale. On

the other hand, while setting m2 = −3/L2
eff has the advantage of fixing the mass relative

to the asymptotic AdS scale, this mass now varies with respect to the physical measurables

of black hole mass and temperature as we vary α. Since condensation is a temperature

dependent phenomenon, we believe that fixing the scalar mass with respect to the black

hole is the correct physical choice, however, we have also checked that for the alternative

choice of mass the same qualitative features occur as we vary α.

In order to solve our equations we need to impose regularity at the horizon and the

AdS boundary:

• Regularity at the horizon gives two conditions:

φ(rH) = 0, ψ(rH) = −4

3
rHψ

′(rH) . (2.10)

• Asymptotically (r → ∞) the solutions are found to be:

φ(r) = µ− ρ

r2
, ψ =

C−

rλ
−

+
C+

rλ+
, (2.11)

where λ± = 2±
√

4 − 3
(

Leff

L

)2
. Here, µ and ρ are interpreted as a chemical potential and

charge density, respectively. Note that these are not entirely free parameters, as there is a

scaling degree of freedom in the equations of motion. As in [6], we impose that ρ is fixed,

which determines the scale of this system. For ψ, both of these falloffs are normalizable,

so we can impose the condition either C− or C+ vanish. We take C− = 0, for simplicity.

According to the AdS/CFT correspondence, we can interpret 〈O〉 ≡C+, where O is

the operator dual to the scalar field. Thus, we are going to calculate the condensate 〈O〉
for fixed charge density. The results are shown in figure 1. From figure 1, we see the GB

term makes the condensation gap larger. We also see that the Chern-Simons limit shows
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a slightly different dependence of the condensate on temperature. This can be understood

from the behaviour of gravity near the horizon. In the Chern-Simons limit, α=L2/4, we get

f(r) =
2r2

L2

(

1 −
√
ML2

r2

)

. (2.12)

Hence, the correction to the AdS quadratic gravitational potential dependence is simply a

constant instead of a 1/r2 dependence, leading to more gentle tidal behaviour. The process

of scalar condensation (or the formation of scalar hair) can be understood as arising in part

from the ‘negative’ mass of the scalar field, but also as arising from the potential well that

occurs near the horizon. For black holes with large mass, this well is too broad and shallow

to allow for the formation of a nonzero scalar, however, for small black hole mass, the strong

curvature near the horizon is amenable to condensation. (Refer to the analytic arguments

in section III which show how the behaviour of the gravitational potential interacts with

features of the scalar condensate.) At some stage further decreasing the mass of the black

hole does not alter the shape of the condensate much, as the scalar is already sampling

regions of strong curvature. However, the CS limit has a rather different and smoother

profile near the horizon, therefore it is not surprising that decreasing the black hole mass

in this case has more impact on the details of the scalar field.

Numerically, we found that increasing α resulted in a decrease of the critical temper-

ature: Tc = 0.198ρ1/3 for α = 0.0001, Tc = 0.186ρ1/3 for α = 0.1, Tc = 0.171ρ1/3 for

α = 0.2, and Tc = 0.158ρ1/3 for α = 0.25 (see also figure 2). Thus the effect of α is to make

it harder for scalar hair to form. Changing the scalar mass to m2 = −3/L2
eff gives a similar,

though less marked, behaviour, for example Tc = 0.181ρ1/3 for α = 0.2. We can therefore

conclude, as expected, that the higher curvature corrections make it harder for the scalar

hair to form. One can expect this tendency to be the same even in (2+1)-dimensions, how-

ever, it remains obscure to what extent this suppression affects the physics of holographic

superconductors in (2+1)-dimensions.

We have thus numerically verified that Gauss-Bonnet superconductors exist. However,

we would ideally like to have an analytic understanding of condensation to back up this

numerical work. This is what we now turn to.

3 Superconductors in a nutshell

Although in the previous section we used numerical integration to explicitly demonstrate

the condensation phenomenon, ideally we would like to obtain an analytic understanding in

parallel. Since our equations are nonlinear and coupled, we cannot derive analytic solutions

in closed form, however we can deduce a great deal of information analytically. We first

prove the nonexistence of condensation for large T before explicitly deriving the phase

diagram analytically by using approximate solutions.

Note that the trivial solution to (2.8) and (2.9)

φ = φ0(r) =
ρ

r2H

(

1 − r2H
r2

)

(3.1)

ψ ≡ 0 (3.2)
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Tc

<O>
1

Λ
+

Tc

Figure 1. The condensate as a function of temperature for various values of α. The (lowest) red

line is for α = 0.0001, the middle brown plot is α = 0.1, the top blue line is α = 0.2 and the

remaining line intersecting the other three in green is the Chern-Simons limit α = 0.25. Note that

while the generic Einstein-Gauss-Bonnet behaviour is to level out for T ≤ Tc/2, the Chern-Simons

limit has a much stronger variation of the condensate with temperature.

always exists. We will now prove that there is a temperature above which this is the only

solution.

First consider the φ equation (2.8). Let φ(r) = φ0(r) + δφ, where φ0(r) is defined

above. Then (2.8) implies
(

r3δφ′
)′ ≥ 0 (3.3)

however, as r → ∞, r3φ′ → 2ρ = r3φ′0, hence r3δφ′ → 0 at infinity, and using δφ = 0 at

rH we have that δφ′ ≤ 0. Hence

φ(r) ≤ φ0(r) . (3.4)

Next consider the scalar field, and define the variable X = rψ:

X ′′ +

(

f ′

f
+

1

r

)

X ′ +

(

φ2

f2
+

3

L2f
− f ′

rf
− 1

r2

)

X = 0 (3.5)

Now, the boundary conditions at the horizon implyX ′
H = XH/4rH , and at infinity, rfX ′ →

0, thus the existence of a condensate requires a turning point inX, X ′(r
T
) = 0, withX ′′ < 0

for X > 0. This in turn requires

φ2
0(rT

)

f(r
T
)

+
3

L2
− f ′(r

T
)

r
T

− f(r
T
)

r2
T

>
φ2(r

T
)

f(r
T
)

+
3

L2
− f ′(r

T
)

r
T

− f(r
T
)

r2
T

> 0 (3.6)

at the turning point. By inputting the form of φ0(r), it is easy to see that if M is too large,

this inequality can never be satisfied, as the combination of φ and the geometry to the l.h.s.

of (3.6) is always negative. This gives a loose upper bound on the critical temperature as

shown in figure 2. (For α = 0 we need to use the fact that
∫∞

r
T

(rfX ′)′ = 0 to bound M .
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Figure 2. A comparison of analytic and numerical results. The shaded region is that in which the

geometry forbids the possibility of a scalar condensate from (3.6). The dashed line indicates the

analytic approximation of the value of Tc obtained by matching methods, (3.27). The data points

are the exact numerical results. For simplicity ρ and L have been set to 1.

This also gives a tighter analytical bound for nonzero α, however, the above argument is

more direct.)

We have thus numerically verified that Gauss-Bonnet superconductors exist. Having

shown that there is a critical temperature below which there is no barrier to condensa-

tion, we will now show we can understand the essential features of condensation by using

approximation techniques.

Once again, let us change variables and set z = rH

r . Under this transformation equa-

tions (2.8) and (2.9) become

φ′′ − 1

z
φ′ − r2H

z4

2ψ2

f
φ = 0 (3.7)

ψ′′ +

(

f ′

f
− 1

z

)

ψ′ +
r2H
z4

(

φ2

f2
+

3

L2f

)

ψ = 0 (3.8)

where a prime now denotes d
dz . The region rH < r < ∞ now corresponds to 0 < z < 1.

The boundary conditions now become:

• Regularity at the horizon z = 1 gives

φ(1) = 0 , ψ′(1) =
3

4
ψ(1) . (3.9)

• In the asymptotic AdS region: z → 0, the solutions are

φ = µ− qz2 , ψ = D−z
λ
− +D+z

λ+ , (3.10)

where λ± is the same as in equation (2.11). As boundary conditions, we fix qr2H and take

D− to be zero.
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We now find leading order solutions near the horizon and asymptotically, say 1 ≥ z >

zm and zm > z ≥ 0, and then match these smoothly at the intermediate point, zm. As a

consequence, we will demonstrate the phase transition phenomenon directly, and derive an

(approximate) analytic expression for the critical temperature. Moreover, we will have a

much better analytical understanding of α dependence of the critical temperature, as the

proof above only gives a loose bound on the critical temperature and only indirect access

to an expression.

3.1 Solution near the horizon: z = 1

We can expand φ and ψ in a Taylor series near the horizon as:

φ(z) = φ(1) − φ′(1)(1 − z) +
1

2
φ′′(1)(1 − z)2 + · · · (3.11)

ψ(z) = ψ(1) − ψ′(1)(1 − z) +
1

2
ψ′′(1)(1 − z)2 + · · · (3.12)

From (3.9), we have φ(1) = 0 and ψ′(1) = 3
4ψ(1), and without loss of generality we take

φ′(1) < 0, ψ(1) > 0 to have φ(z) and ψ(z) positive. Expanding (3.7) near z = 1 gives:

φ′′(1) =
1

z
φ′
∣

∣

z=1
+
r2H
z4

2ψ2

f
φ

∣

∣

∣

∣

z=1

= φ′(1) − 2r2Hψ(1)2

z4(1 − z)f ′(1)

(

−φ′(1)(1 − z) +
1

2
φ′′(1)(1 − z)2 + · · ·

) ∣

∣

∣

∣

z=1

=

(

1 − L2

2
ψ(1)2

)

φ′(1) (3.13)

Thus, we get the approximate solution

φ(z) = −φ′(1)(1 − z) +
1

2

(

1 − L2

2
ψ(1)2

)

φ′(1)(1 − z)2 + · · · (3.14)

Similarly, from (3.8), the 2nd order coefficients of ψ can be calculated as

ψ′′(1) =
1

z
ψ′

∣

∣

∣

∣

z=1

−
z4f ′ψ′ + 3

r2
H

L2ψ

z4f

∣

∣

∣

∣

∣

∣

z=1

− r2Hφ
2

z4f2
ψ

∣

∣

∣

∣

z=1

= ψ′(1) −
4z3f ′ψ′+z4f ′′ψ′+z4f ′ψ′′+3

r2
H

L2 ψ
′

4z3f + z4f ′

∣

∣

∣

∣

∣

∣

z=1

− r2Hψ (−φ′(1)(1−z)+· · · )2
f ′(1)2(1 − z)2

∣

∣

∣

∣

∣

z=1

= −5

4
ψ′(1) + 8

α

L2
ψ′(1) − ψ′′(1) − L4

16r2H
φ′(1)2ψ(1) (3.15)

where we used l’Hôpital’s rule at the second term in the second line. Thus, we get

ψ′′(1) =

(

−5

8
+

4α

L2

)

ψ′(1) − L4

32r2H
φ′(1)2ψ(1) (3.16)

After eliminating ψ′(1) from above equation by using eq. (3.9), we find an approximate

solution near the horizon as

ψ(z) =
1

4
ψ(1) +

3

4
ψ(1)z +

(

−15

64
+

3α

2L2
− L4

64r2H
φ′(1)2

)

ψ(1)(1 − z)2 + · · · (3.17)
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3.2 Solution near the asymptotic AdS region: z = 0

From (3.10), φ and ψ in the asymptotic region are given by

φ(z) = µ− qz2 , ψ(z) = D+z
λ+ (3.18)

where qr2H is fixed and we have set D− = 0 from the boundary condition.

3.3 Matching and phase transition

Now we will match the solutions (3.14), (3.17) and (3.18) at zm. Interestingly, allowing zm
to be arbitrary does not change qualitative features of the analytic approximation, more

importantly, it does not give a big difference in numerical values, therefore for simplicity in

demonstrating our argument we will take zm = 1/2. In order to connect our two asymptotic

solutions smoothly, we require the following 4 conditions:

µ− 1

4
q =

1

2
b− 1

8
b

(

1 − L2

2
a2

)

(3.19)

−q = −b+
1

2
b

(

1 − L2

2
a2

)

(3.20)

D+

(

1

2

)λ+

=
5

8
a+

1

4
a

(

−15

64
+

3α

2L2
− L4

64r2H
b2
)

(3.21)

2λ+D+

(

1

2

)λ+

=
3

4
a− a

(

−15

64
+

3α

2L2
− L4

64r2H
b2
)

(3.22)

where we have set ψ(1) ≡ a and −φ′(1) ≡ b (a, b > 0) for clarity. Now, the AdS/CFT dic-

tionary gives a relation 〈O〉 ≡ LD+r
λ+

H L−2λ+ , hence we need to compute D+. From (3.21)

and (3.22) we obtain

D+ =
13

8

2λ+

λ+ + 2
a . (3.23)

Using (3.19) and (3.20), a is expressed by

a2 =
4q

L2b

(

1 − b

2q

)

, (3.24)

where b is obtained from (3.21) and (3.22) assuming a 6= 0 (i.e. the scalar solution is

non-trivial) as:

b = 8
rH
L2

√

5λ+ − 3

2(λ+ + 2)
− 15

64
+

3α

2L2
. (3.25)

Now we go back to the original variable, r, and compare the results with those in [7].

First of all, we should note the relation ρ = q r2H . We also define b̃ by b = b̃rH/L
2. Using

the Hawking temperature T = rH

πL2 , we can rewrite (3.24) as

a2 =
2

L2

T 3
c

T 3

(

1 − T 3

T 3
c

)

, (3.26)
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where we have defined Tc as

Tc =

(

2ρ

b̃L

)1/3 1

πL
. (3.27)

We can now read off the expectation value 〈O〉 from (3.23) and (3.26) as:

〈O〉
1

λ+

Tc
= 2π

(

13

8

√
2

λ+ + 2

)
1

λ+ T

Tc

[

T 3
c

T 3

(

1 − T 3

T 3
c

) ]

1

2λ+

, (3.28)

where we have normalized by the critical temperature to obtain a dimensionless quantity.

We find that 〈O〉 is zero at T = Tc, the critical point, and condensation occurs for T < Tc.

We also see a behaviour 〈O〉 ∝ (1−T/Tc)
1/2 which is a typical mean field theory result for

a the second order phase transition.

Next, we evaluate the critical temperature from (3.27). The value of Tc is 0.201ρ1/3/L

when the Gauss-Bonnet term is absent, this should be compared with the numerical result

Tc = 0.198ρ1/3/L in [7]. We therefore see that our analytic approximation is good. More-

over, as α increases to 0.1, 0.2 and 0.25, Tc decreases to 0.196, 0.191 and 0.188 respectively,

which is in good agreement with our numerical results.

Thus, we have (approximately) reproduced our numerical results from a simple analytic

calculation. In particular, we have calculated extremely good estimates of the critical

temperatures, and revealed how the structure of the interaction term has produced the

phase transition.

4 Conductivity and universality

We now calculate the conductivity, σ, of our boundary theory. In [7], the conductivity for

various cases was calculated and it was found that there is a universal relation

ωg

Tc
≃ 8 , (4.1)

with deviations of less than 8 %. The purpose of this section is to examine if this universality

holds in the presence of stringy corrections.

As Aµ in the bulk corresponds to the four-current Jµ on the CFT boundary, we can

calculate the conductivity by considering perturbation of Aµ. The spatial components

of Aµ are decomposed into longitudinal and transverse modes: Ai = (∂iχ,A
⊥
i ). These

linearized perturbations are decoupled from each other and can be studied separately. The

linearized equation of motion for A⊥
i (t, r, xi) = A(r)eik·x−iωtei, which corresponds to the

current density, is

A′′ +

(

f ′

f
+

1

r

)

A′ +

(

ω2

f2
− k2

r2f
− 2

f
ψ2

)

A = 0 . (4.2)

We solve this under the following boundary conditions near the horizon:

A(r) ∼ f(r)
−i ω

4rH , (4.3)
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which corresponds to no outgoing radiation at the horizon. In the asymptotic AdS region

(r → ∞), the general solution takes the form

A = A(0) +
A(2)

r2
+
A(0)(ω2 − k2)L2

eff

2

log Λr

r2
(4.4)

where A(0), A(2) and Λ are arbitrary integration constants. Note the appearance of the

arbitrary scale Λ, which leads to a logarithmic divergence in the Green’s function, as

explained in [7]. Since this can be removed by an appropriate boundary counterterm, this

scale will disappear from the results.

From linear response theory, the conductivity can be calculated by the formula

σ(ω) =
1

iω
GR(ω, k = 0) , (4.5)

where k is the wavenumber. The retarded Green function GR can be calculated through

the AdS/CFT correspondence [36] as:

GR = − lim
r→∞

f(r)rAA′ . (4.6)

Thus, by using the solution (4.4), the conductivity is given by

σ =
2A(2)

iωA(0)

∣

∣

∣

∣

k=0

+
iω

2
. (4.7)

We therefore need to solve (4.2) numerically with the boundary condition (4.3) to obtain

A(0) and A(2) asymptotically.

The plots in figures 3−6 show the results of this numerical integration for α =

0.0001, 0.1, 0.2 and 0.25 at temperatures T/Tc ≈ 0.152, 0.151, 0.152 and 0.152, respectively.

The red line represents the real part, and blue line the imaginary part of σ. Taking look at

the imaginary part of the conductivity, we see a pole exists at ω = 0. From the Kramers-

Kronig relations, this implies the real part of the conductivity contains a delta function.

Clearly, the real part of the conductivity shows a frequency gap which indicates a gap

in the spectrum of charged excitations. As α increases, the gap frequency (normalized by

Tc) becomes large. As we noticed that condensation is an increasing function of α this

tendency is consistent with the conventional relation ωg ∝ 〈O〉. We see the universal

relation
ωg

Tc
≈ 8 found in [7] is unstable in the presence of the Gauss-Bonnet correction.

We have also checked that this conclusion is not affected by choosing the alternative scalar

mass, M2 = −3/L2
eff .

5 Conclusion

We have studied holographic superconductors in the presence of Gauss-Bonnet correc-

tions to the gravitational action. Motivated by the Mermin-Wagner theorem, we have

investigated if the higher derivative corrections suppress the phase transition or not. We

numerically solved the system in the probe limit and obtained phase diagrams for various
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Figure 3. Conductivity for α = 0.0001 case.
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Figure 4. Conductivity for α = 0.1 case.
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Figure 5. Conductivity for α = 0.2 case.
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Figure 6. Conductivity for α = 0.25 case.

Gauss-Bonnet couplings α, and calculated the critical temperatures. As we increase α, the

critical temperature decreases, thus it turns out that stringy corrections make condensation

harder. However, we did not reach the point that the critical temperature of the transition

vanishes for changing α. We would also expect this to apply to the (2+1)-dimensional case,

however, it is beyond the scope of this paper to determine if this could destroy holographic

superconductors in (2+1)-dimensions.

To understand phase transition phenomena, we also conducted an analytic analysis

of the coupled nonlinear equations, finding an approximate analytic solution. In spite of

the apparent crudity of this approximation, we have analytically demonstrated the phase

transition. Surprisingly, it turned out that the analytical method gave good agreement

with the numerical results. In particular, we have calculated the critical temperature ana-

lytically. We obtained Tc = 0.201ρ1/3, which is close to the numerical result Tc = 0.198ρ1/3

for α → 0. We also applied the same method to the (2+1)-dimensional superconductor,

presented in the appendix. The resultant critical temperature was Tc = 0.103
√
ρ, which

should be compared with the numerical result Tc = 0.118
√
ρ [6].

Our other purpose was to examine the universality of the gap frequency to the crit-
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ical temperature ratio. By calculating conductivity, we found the universal behaviour of

conductivity ωg/Tc ≃ 8 was unstable to the stringy corrections.

There are many issues to be investigated further. The obvious next step is to incorpo-

rate back reaction, which is particularly important in the low temperature regime which

corresponds to small black holes. In that case, the stability of black holes should be con-

sidered [37–40]. Although we have investigated the stability of the superconductor under

stringy corrections, it is also intriguing to study the dynamical stability of the condensation

phase, as well as other aspects of superconductors [41–44].
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A Analytical approach to (2+1)-dimensional superconductors

In the main text, we have shown a simple analytic treatment gives a good explanation

of superconductivity. Here for completeness, we show (2+1)-dimensional superconductors

can be also explained using the same method.

In the 4-dimensional case, we have the following equations

φ′′ +
2

r
φ′ − 2ψ2

f
φ = 0 , (A.1)

ψ′′ +

(

f ′

f
+

2

r

)

ψ′ +

(

φ2

f2
− m2

f

)

ψ = 0 , (A.2)

where now

f(r) =
r2

L2

(

1 − r3H
r3

)

(A.3)

with rH = (ML2)1/3. We set the mass of the scalar field, m2 = −2/L2, as in [6]. By

changing to the z variable as before, z = rH

r , (A.1) and (A.2) become

φ′′ − 2L2ψ2

z2(1 − z3)
φ = 0 (A.4)

ψ′′ − 2 + z3

z(1 − z3)
ψ′ +

(

L4φ2

r2H(1 − z3)2
+

2

z2(1 − z3)

)

ψ = 0 (A.5)

where a prime now denotes d
dz . Next we consider the boundary conditions with these new

variables. Regularity at the horizon, z = 1, requires

φ(1) = 0 , ψ′(1) =
2

3
ψ(1) , (A.6)
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and the asymptotic solution in the AdS region, z → 0, reads

φ = µ− qz , ψ = C1z + C2z
2 . (A.7)

As in [6] we fix the charge qrH and take C1 to be zero.

We now find an approximate solution around both z = 1 and z = 0 using Taylor

expansion as before, then connect these solutions between z = 1 and z = 0.

A.1 Solution near the horizon: z = 1

We expand φ and ψ as

φ(z) = φ(1) − φ′(1)(1 − z) +
1

2
φ′′(1)(1 − z)2 + · · · (A.8)

ψ(z) = ψ(1) − ψ′(1)(1 − z) +
1

2
ψ′′(1)(1 − z)2 + · · · (A.9)

From the boundary condition (A.6), φ(1) = 0 and ψ′(1) = 2
3ψ(1), and we again set φ′(1) < 0

and ψ(1) > 0 for positivity of φ(z) and ψ(z).

First we compute the 2nd order coefficient φ using (A.4) as

φ′′
∣

∣

z=1
=

2L2ψ2

z2(1 − z3)
φ

∣

∣

∣

∣

z=1

= −2

3
L2φ′(1)ψ(1)2 > 0 , (A.10)

giving

φ(z) = −φ′(1)(1 − z) − 1

3
L2ψ(1)2φ′(1)(1 − z)2 + · · · . (A.11)

The 2nd derivative of ψ is calculated similarly as

ψ′′
∣

∣

z=1
=

2 + z3

z(1 − z3)
ψ′

∣

∣

∣

∣

z=1

− 2

z2(1 − z3)
ψ

∣

∣

∣

∣

z=1

− L4φ2

r2H(1 − z3)2
ψ

∣

∣

∣

∣

z=1

=
(z4 + 2z)ψ′′ + 4z3ψ′

2z − 5z4

∣

∣

∣

∣

z=1

− L4

9r2H
φ′(1)2ψ(1)

= −ψ′′(1) − 4

3
ψ′(1) − L4

9r2H
φ′(1)2ψ(1) (A.12)

Thus

ψ′′(1) = −2

3
ψ′(1) − L4

18r2H
φ′(1)2ψ(1) . (A.13)

Using (A.6) to eliminate ψ′, we find

ψ(z) =
1

3
ψ(1) +

2

3
ψ(1)z − 2

9

(

1 +
L4

8r2H
φ′(1)2

)

ψ(1)(1 − z)2 + · · · (A.14)
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A.2 Solution near the asymptotic AdS region: z = 0

We expand φ and ψ, making use of asymptotic solutions (A.7), as

φ(z) = µ− qz +
1

2
φ′′(0)z2 + · · · (A.15)

ψ(z) = C2z
2 + · · · (A.16)

where we have used C1 = 0.

Then the 2nd derivative of φ is given by

φ′′
∣

∣

z=0
=

2L2ψ2

z2(1 − z3)
φ

∣

∣

∣

∣

z=0

= 0 (A.17)

and we get simply

φ(z) = µ− qz , ψ(z) = C2z
2 (A.18)

where qrH is fixed.

A.3 Matching and phase transition

As before, we connect the solutions (A.11), (A.14) and (A.18) at z = 1
2 . In order to connect

those solutions smoothly, we require the following 4 conditions:

µ− 1

2
q =

1

2
b+

L2

12
a2b (A.19)

−q = −b− L2

3
a2b (A.20)

1

4
C2 =

11

18
a− L4

144r2H
ab2 (A.21)

C2 =
8

9
a+

L4

36r2H
ab2 (A.22)

where ψ(1) ≡ a and −φ′(1) ≡ b, with (a, b > 0) as before. Eliminating a2b from (A.19)

and (A.20) gives

µ =
3

4
q +

1

4
b . (A.23)

From (A.19) and (A.20), we can also deduce

a2 =
12

L2b
(q − µ) . (A.24)

The above relation alludes to phase transitions, namely, given q, µ has a maximum value

when we assume the non-trivial solution a 6= 0. Substituting the relation (A.23) into (A.24),

we have

a =

√
3

L

√

q

b

√

1 − b

q
. (A.25)
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To relate this result to the expectation value of the dimension 2 operator 〈O2〉 =√
2C2r

2
H/L

3, we eliminate ab2 from (A.21) and (A.22) to obtain

C2 =
5

3
a . (A.26)

Similarly, eliminating C2 from (A.21) and (A.22) gives

a

(

b2 − 28
r2H
L4

)

= 0 , (A.27)

which determines b = 2
√

7rH/L
2 provided a 6= 0.

Now we are in a position to reveal the phase transition phenomenon in this simple

system. Noting the relation ρ = q rH , and using the Hawking temperature: T = 3rH

4πL2 ,

〈O2〉 can be expressed by

〈O2〉 =
80π2

9

√

2

3
TcT

√

1 +
T

Tc

√

1 − T

Tc
(A.28)

where Tc is defined as

Tc =
3
√
ρ

4πL
√

2
√

7
(A.29)

We see that 〈O2〉 is zero at T = Tc, which is a critical point, and condensation occurs

at T < Tc. The mean field theory result 〈O2〉 ∝ (1 − T/Tc)
1/2 is also recovered. The

value, (A.29), of Tc is evaluated as 0.103
√
ρ/L. Comparing with the numerical result

0.118
√
ρ/L in [6], we find our analytic approximation is quantitatively good. Also the

coefficient of (1−T/Tc)
1/2 as T → Tc is now 101T 2

c , while the numerical result is 144T 2
c [6],

which means this approximation seems good.

One may wonder what happens if we change zm. If we connect the solutions at zm (0 <

zm < 1), the result is

〈O2〉 =
16π2

9

2 + zm
3zm

√

3

1 − zm
TcT

√

1 +
T

Tc

√

1 − T

Tc
(A.30)

where

Tc =
3

4πL

√

ρ

b̃
, b̃ =

√

4(1 + 5zm)

1 − zm
(A.31)

In order to get the same value Tc = 0.118
√
ρ/L as [6], we need to choose zm = 0.34. For

this value, the coefficient of (1− T/Tc)
1/2 as T → Tc becomes 121T 2

c . Thus, a numerically

better approximation is possible, however, the choice of zm does not give a big qualitative

difference.
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